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Direct Design Formulas for Asymmetric
Bandpass Channel Diplexers
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Abstract—This paper gives direct design formulas for asymmetric
bandpass channel diplexers, which allow rapid design of diplexers
using narrow-band direct-coupled resonator filters. Computed results
for a prototype diplexer are given, and results are presented for a
5.8-GHz asymmetric waveguide diplexer, which demonstrate the
high performance possible using this design technique.

I. INTRODUCTION

HIS PAPER gives direct design formulas for asymmet-

ric bandpass channel prototype diplexers, which can be
transformed into narrow-band diplexers using direct-
coupled resonator filters. These formulas are a generaliza-
tion of ones given for the symmetrical case in an earlier
paper by Rhodes [1].

The asymmetric bandpass diplexer consists of two dis-
similar bandpass filters connected in series. To compensate
for the interaction between the filters, each is internally
modified, and a series annulling reactance is introduced. The
design procedure forces the reflection coefficient at the
common port to be approximately zero at a finite set of
frequencies in each channel. The reflection coefficient at
each of the other ports is automatically forced to be zero to
the same degree of approximation at the set of frequencies in
the corresponding channel.

Compared to the filters operating in isolation, each
channel of the diplexer shows a significant increase in skirt
selectivity over the passband of the other, which may allow a
reduction of degree to meet a given specification. The return
loss at each port is only slightly degraded, and this may be
allowed for by improving the specification of the original
bandpass filters.

Section II quotes the formulas without proof: the proofis
givenin Section ITL Section IV gives computed responses for
a typical prototype diplexer, and proceeds to consider the
design of a waveguide diplexer at 5.8 GHz. The measured
response of this diplexer agrees closely with theory.

1I. THE DESIGN FORMULAS

The essentials of the type of diplexer considered here are
shown in Fig. 1. It consists of a pair of bandpass filters,
whose input impedance in the stopband tends to a short
circuit, connected in series. The input impedance at the
common port of the diplexer approximates to a constant
resistance in the passband of each filter. Since the stopband
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Fig. 1. An elementary series connected diplexer.
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Fig. 2. Low-pass prototype networks used in the design procedure.

input impedance of each filter is actually finite and complex,
the filters interact unless their passbands are very widely
separated. To compensate for this interaction, each filter is
modified internally, and the frequency-invariant annulling
reactance X, is connected in series with the filters.

Let the bandpass filters be based on the normalized,
doubly terminated low-pass prototype networks shown in
Fig. 2. Each prototype begins with a pair of capacitors
coupled through an admittance inverter, the rest of the
network being arbitrary. The derivation of the design for-
mulas requires that the input impedance of each prototype
be unity at some set of frequencies in the passband, and each
filter must have at least a second-ordered transmission zero
at infinity. Since the networks are assumed lossless, the first
condition implies that they have zero insertion loss at the
same sets of frequencies. Prototype element values for
Chebyshev, Butterworth, or even linear-phase filters are
available from explicit formulas or fairly simple synthesis
procedures [2].
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Fig. 3 shows the diplexer prototype circuit. The channels
have been transformed to bandpass filters at center frequen-
cies +a. The section of each prototype following the first
two shunt capacitors is transformed by the direct frequency
transformation:

(1)

The elements in the first two “resonators” of each filter are
obtained from the formulas (2)-(10) below, which are
equivalent to (1) as & — oo. If the prototypes are identical,
these formulas reduce to those given in [1].

The approximate improvements in the insertion loss of
each channel in the center of the passband of the other are
given in (11) and (12). AL, is the increase in insertion loss of
the upper filter in the center of the passband of the lower
filter, compared to the filter in isolation, and corre-
spondingly for AL;.

Referring to Fig. 3, the design formulas are as follows:
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The prototype diplexer circuit.
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II1. PrOOF OF THE DESIGN FORMULAS

The element values in (2)-(10) are given in terms of the
band separation factor «. The transformation o — —a
should clearly interchange the channels, and the further
transformation w - —w will interchange them again. Thus
application of both transformations must result in a
network which is indistinguishable at its ports from the
original. Considering the affects which these transforma-
tions have on the frequency invariant susceptances of the
original network, these susceptances must be odd functions
of o Similarly, the transformers and admittance inverters
must be even functions of «.

As the separation between the channels becomes very
large, the interactions between them become vanishingly
small; thus, writing the element values as power series in
a~ 1, they must be of the following form:

XO‘_‘; +O(73 +8(O(-5) (13)
A= —C, (a+%—1 +% +s(oc_5)) (14).
A,=—C, (oz +% ’+% + s(a_s)) (15)
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B, =D, (“_'_?1_1 +b—133 +8(a“5)) (16)
o o
B,=D, (oc b b b” + a(a-S)) (17)
Ri=1+ % + g(a™*) (18)
=1 + S +e(@™?) (19)
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12 2 k2 -4
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In these equations, &(—

»

) means “an error of the order of

All the other elements in the network are obtained from
the direct transformation (1), and thus only the first two
resonators in each filter are modified from the values they
have when the filter is working in isolation.

Yi(jw; + @) = jlo, + 2)C, — jC,o(a + asy /ot + ay3/a)

+
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Multiplying (24a) and (24b) by the denominator of (24a),
and equating terms of equal degree in a, we get

=
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Let the prototype filters of Fig. 2 have an input impedance
of unity, and, hence, zero insertion loss, at the sets of
frequencies {w;}, {o;}. Since there is maximum power transfer
through the filter at these frequencies, it follows that, at these
frequencies, the input admittances Y;(jw;) and Y,(jo;)area
conjugate match to the admittances looking towards the
first two elements of each filter. After applying the frequency
transformation w — w F « to the subnetworks N, and N, to
get N and N3, respectively (Fig. 3), it follows that

K32
" (ile, = —iw, S S 2
Yl(](a)l + O()) ]wtCZ + _jwicl + 1 ( 2)
Yylilo:— 1)) = —joDs + —1 . (@3)
g 92T D 1

We may now derive a power series expansion of the
impedance Z,(j(w; + a)), which is the input impedance of
the lower filter in the passband of the upper filter:

w? ,
I 25
Knowing Z,, we can calculate Y{(j(w; + a)):

(1+r,/a?)
L4z fo + z, /0 + 23 fo®
Now (26) can be expanded as a power series in o~ . Letting

a — oo in (26), we obtain the leading term of the power series,
which is

2

"= jw;Cy + — =
I 2+ C+1

a conjugate match for Y, (22). We must therefore choose the
unknowns in (13)-(21) so that the higher order terms in the

. expansion of Y7 are zero: this is possible up to the third

degree in a. Before going on to consider the equations in
the unknowns that this gives, note that similar equations can
be obtained for the upper filter in the passband of the lower
filter, at the set of frequencies {o; — a}, to force similar
conditions on Y7.

Expanding Y’ and Y and equating the coefficients of the
first-, second-, and third-degree terms in o~ ! to zero we get

14 r,/0?
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the following equations: from the ¢~ ! terms:

1
—ay; +E—x1—C1a11=0 (27a)
1
b21+D1b11—X1"‘2C—1=0 (27b)

from the ¢~ 2 terms:

. 1\?  jo,
ki(1+ jo,Cy) — [rl - (x1 ~3D: ) - iD } =0 (28a)
1 1

1\ o
+2C1) —4C1J—O. (28b)

From the w; dependent terms in (28a) and (28b) we get the
following independent equations:

ky(1 + joiDy) — [rz - (X1
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The o~ 3 terms are more complicated:
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The w? term from (30a) gives
) KZ K2
2 _ BT _ 81 31
JC1Ca3; JSD 0, azs 8C2C,D; (31)
and the o7 term from (30b) gives
J? J?
—jD? oL =L 32
JD1D3bys +j 8C, 0, ba3 8D?2D,C, (32)

Substituting into (30a)and (30b) and solving for the w; terms
gives, from (30a),
1 1 1 ( 1 1

L= = -2} @33
¢, "ap, T¥1=0 xi=5lp cl) (33)

and this result is also given by (30b).
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Fig. 4. Common-port return loss of unmodified filters connected in
series.

Substituting for x, in (27a) and (27b), both a,, and b,,
can be zero with no loss of generality, and we obtain

4y = 5& (34)
by, = 5;—%. (35)

Eliminating x,, k;, and k, in (28a) and (28b), we get
T
call o

Finally, substituting into (30a) and (30b) and solving for the
constant term, we find that x; can be zero without loss of
generality, and

1 (J2 1
= |— —— 38
s SD%cl(Dz cl) 9
1 (K? 1
= =t - 39
bis SC%D1(02 Dl) %)

Equations (29) and (31)—(39) are the coefficients in (2)-(10).
Consider the upper filter in Fig. 3. The design procedure

forces Yi(j(w, + @) = Y(i(o; + a)) + (@)
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Fig. 7. Response of the waveguide diplexer. (a) Return loss. (b) Insertion loss.
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and, except for an error of the order of a™*, there must
therefore be maximum power transfer into N';. Since the
lower filter, in its stopband, has an input impedance which is
purely reactive up to the order of &~ #, it follows that, to this
order of approximation, there is maximum power transfer
from the source to the whole network. Also, since N is
lossless, there is maximum power transfer from N') to its
load. Thus it follows that

S11(j(; + a)) =0 + e(a™?)
S2a(j(w; + a)) = 0 + &(a™*)

and similar conditions hold for the common port and the
output port of the other channel at the set of frequencies
{o; — o}

Now consider the upper filter of Fig. 3 at the center of the
passband of the lower filter. The increase in the insertion loss
of the filter is due to the potential-divider action which
results from the passband input impedance of the lower filter
and the annulling reactance being connected in the series
with the source resistance. Considering the modifications to
the filters, it is easy to show that the increase in insertion loss
is given by

1
AL, ~6+ 101 1+—>
(] + Ogm( + 4C%O€2) (40)
and similarly
1
ALy~ 64 10 logyo (1 +ZD%7) (41)

This process can be continued, and corrections of the

fourth and higher degrees in 1/o obtained. However, the
magnitude of the corrections becomes small compared with
manufacturing tolerances, and the principle corrections are
to the resonant frequencies of the elements and are
inevitably made during tuning of the diplexer.

In [1], Rhodes showed that the symmetrical diplexer
performed well even when the channels were contiguous.
This is not true of the asymmetric diplexer, unless the
selectivities of the individual filters are comparable at their
band edges, and this criterion must be used to determine the
filter specification for a given application.

IV. PERFORMANCE OF A TYPICAL DIPLEXER
Consider the following diplexer example.
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Each filter has a conventional Chebyshev response and
the explicit element values given in [2]. The degree and ripple
level have been chosen such that the insertion losses of each
channel are equal at zero frequency.

The common-port return-loss response of the two filters
connected directly in series is shown in Fig. 4; clearly, the
interactions between the filters cause an unacceptable degra-
dation of performance.

In contrast, Fig. 5 shows the performance obtained by
modifying the filters according to the design procedure given
in Section II: the improvement over Fig. 4 is very marked.
The in-channel return loss is better than 22 dB, and the lower
frequency channel shows very little degradation. The
insertion-loss curves also show the predicted improvement.

A waveguide diplexer has been designed from this prot-
otype. This was made in waveguide 14, ata center frequency
of 5.8 GHz and channel bandwidths of 20 and 40 MHz; the
channel separation is hence 50 MHz The design of the
diplexer was straightforward, and is sketched in Fig. 6.
The filters were designed using direct-coupled half-wave
cavities, coupled via shunt inductive post irises. The indivi-
dual filters were designed using the procedure in [3], and
the common port was realized by a T-junction with tuning
screws at the center of the junction to provide a capacitive
annulling susceptance. The frequency-invariant suscep-
tances in parallel with the capacitors in the prototype
produce relative differences in the cavity resonant frequen-
cies and were absorbed by adjustments to the tuning screws.

The response of the waveguide diplexer agreed closely
with theory, as is shown in Fig. 7.

V. CONCLUSIONS

The direct design formulas given for asymmetric
bandpass channel diplexers can be used to design high-
performance diplexer prototypes. These prototypes can be
directly transformed into narrow-band diplexers using
direct-coupled resonator filters.

A 5.8-GHz waveguide diplexer has been designed and
built using the new formulas, and its response agreed closely
with theory.
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Center Frequency Bandwidth Return Loss . Degree
(rad/s) (rad/s) ripple (dB)
Low-Frequency
Channel —25 2.0 26 3
High-Frequency
Channel +2.5 4.0 27.31 7




