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Direct Design Formulas for Asymmetric
Bandpass Channel Diplexers

JOHN L. HAINE .4ND, J. DAVID RHODES, MEMBER, IEEE

Abstract—This paper gives direct design formulas for asymmetric

bandpass channel diplexers, which allow rapid design of diplexers

using narrow-band direct-coupled resonator filters. Computed results
for a prototype diplexer are given, and results are presented for a

5.8-GHz asymmetric waveguide diplexer, which demonstrate the

high performance possible using this design technique.

I. INTRODUCTION

T HIS PAPER gives direct design formulas for asymmet-

ric bandpass channel prototype diplexers, which can be

transformed into narrow-band diplexers using direct-

coupled resonator filters. These formulas are a generaliza-

tion of ones given for the symmetrical case in an earlier

paper by Rhodes [1].

The asymmetric bandpass diplexer consists of two dis-

similar bandpass filters connected in series. To compensate

for the interaction between the filters, each is internally

modified, and a series annulling reactance is introcluced. The

design procedure forces the reflection coefficient at the

common port to be approximately zero at a finite set of

frequencies in each channel. The reflection coefficient at

each of the other ports is automatically forced to be zero to

the same degree of approximation at the set of frecpencies in

the corresponding channel.

Compared to the filters operating in isolation, each

channel of the diplexer shows a significant increase in skirt

selectivity y over the passband of the other, which may allow a

reduction of degree to meet a given specification. The return

loss at each port is only slightly degraded, and this maybe

allowed for by improving the specification of the original

bandpass filters.

Section II quotes the formulas without proof: the proof is
given in Section III. Section IV gives computed responses for

a typical prototype diplexer, and proceeds to ccmsider the

design of a waveguide diplexer at 5.8 GHz. The measured

response of this diplexer agrees closely with theory.

II. THE DESIGN FORMULAS

The essentials of the type of diplexer considered here are

shown in Fig. 1. It consists of a pair of bandpass filters,

whose input impedance in the stopband tends to a short

circuit, connected in series. The input impedance at the

common port of the diplexer approximates to a constant

resistance in the passband of each filter. Since the stopband
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Fig. 1. An elementary series connected diplexer.
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Fig. 2. Low-pass prototype networks used in the design procedure.

input impedance of each filter is actually finite and complex,

the filters interact unless their passbands are very widely

separated. To compensate for this interaction, each filter is

modified internally, and the frequency-invariant annulling

reactance X. is connected in series with the filters.

Let the bandpass filters be based on the normalized,

doubly terminated low-pass prototype networks shown in

Fig. 2. Each prototype begins with a pair of capacitors

coupled through an admittance inverter, the rest of the
network being arbitrary. The derivation of the design for-

mulas requires that the input impedance of each prototype

be unity at some set of frequencies in the passband, and each

filter must have at least a second-ordered transmission zero

at infinity. Since the networks are assumed lossless, the first

condition implies that they have zero insertion loss at the

same sets of frequencies. Prototype element values for

Chebyshev, Butterworth, or even linear-phase filters are

available from explicit formulas or fairly simple synthesis
procedures [2].
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Fig. 3. The prototype diplexer circuit.

Fig, 3 shows the diplexer prototype circuit. The channels

have been transformed to bandpass filters at center frequen-

cies t a. The section of each prototype following the first

two shunt capacitors is transformed by the direct frequency

transformation:

co+o.):a. (1)

The elements in the first two “resonators” of each filter are

obtained from the formulas (2)–( 10) below, which are

equivalent to (1) as a ~ cc. If the prototypes are identical,

these formulas reduce to those given in [1].

The approximate improvements in the insertion loss of

each channel in the center of the passband of the other are

given in (11) and (12). ALU is the increase in insertion loss of

the upper filter in the center of the passband of the lower

filter, compared to the filter in isolation, and corre-

spondingly for AL~,

Referring to Fig. 3, the design formulas are as follows:

( K:
A~=–c~ a+

8C; C2D1 IX3)

( [
B1=D1 a+&+ 8c2:a3 :-

1 11 2

(

J:
B,=D2 ct+8D2Dcg3

1 21 i

(- -1

111
R;=l+—

4C1M2 Cl – D1

(- -1

111
R:. l+—

4Dlct2 D1 – Cl

1

D1-1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(K~2=K; l–4C~az
11 )

(

J’~=J; 1– 1
4C1D1cx2)

‘L.=6+1010glo(1 +*)dB

( *ldB
ALL= 6 + 10 Ioglo 1 +

(9)

(lo)

(11)

(12)

III. PROOF OF THE DESIGN FORMULAS

The element values in (2)-(10) are given in terms of the

band separation factor ct. The transformation M+ – u

should clearly interchange the channels, and the further

transformation OJ~ – co will interchange them again. Thus

application of both transformations must result in a

network which is indistinguishable at its ports from the

original. Considering the affects which these transforma-

tions have on the frequency invariant susceptances of the

original network, these susceptances must be odd functions

of u. Similarly, the transformers and admittance inverters

must be even functions of u.

As the separation between the channels becomes very
large, the interactions between them become vanishingly

small; thus, writing the element values as power series in

u– 1, they must be of the following form:

x,=: +; +&(LZ-s) (13)

(Al=–cl ct+f$+~+e(u-s) ) (14).

(
A2= –C2 c?+% ,+~ +&(a-S)

1
(15)
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(11~=1)~ U+++*+8(W-5)1 (16)
Multiplying (24a) and (24b) by the denominator

and equating terms of equal degree in IX,we get

(’

bzl bz~
B2=D2 U+=+ F+8(U-5)

1
(17) 2)DIZI = 1,

–j

‘1 = 2DI

R; = 1 +% +e(a-4)
O.)1

(18) ~ + 2jD1zz = O,
jcoi

‘2 = 4D1

809

of (24a),

R; = 1 + ~ + &(a’4)

(
K’?=lc; 1 +5 +&((x-4)

)

(19)

(20)

( )
Thus

K’; =K; l+$+&(a-4). (21)

‘( )

~i
Z2(j(coi+a))=l+~ xl–~ +j—

In these equations, &(–) means “an error of the order of 1 4DI a2

(- ).” j

[(

1 bll J;
All the other elements in the network are obtained from ‘~x3+2D1 2 – 4D1D2

the direct transformation (l), and thus only the first two

resonators in each filter are modified from the values they cot

have when the filter is working in isolation.
—

4- )1–r2 + 6(a-4). (25)

Knowing 22, we can calculate Y’j(j(cn, + a)):

y’~(j(~i + IX)) = j(u, + ct)C2 – jC2(u + a21/a + a23/a3)

K;(I + kl/a2)
+— -. (26)

(1 + rl/&4)
,.. -,

j(f% + a)C1 –jC1(a + all/a + a13/~3) +
1 + zl/a + z2/a2 + z3/cz3

Let the prototype filters of Fig. 2 have an input impedance

of unity, and, hence, zero insertion loss, at the sets of

frequencies {mi}, {ai}. Since there is maximum power transfer

through the filter at these frequencies, it follows that, at these

frequencies, the input admittances YI (jai) and Y2(joi) area

conjugate match to the admittances looking towards the

first two elements of each filter. After applying the frequency

transformation CD~ co z a to the subnetworks N ~and N2 to

get N~ and N~, respectively (Fig. 3), it follows that

K:
Yj(j(o.)i + a)) = ‘j@iCz + (22)

‘jOiC~ +7

J:
Y2(j(oi – u)) = –jaiD2 + (23)

–j~iD, + ~ “

We may now derive a power series expansion of the

impedance ZI (j(coi + a)), which is the input impedance of

the lower filter in the passband of the upper filter:

Now (26) can be expanded as a power series in u- 1. Letting
a ~ m in (26), we obtain the leading term of the power series,

which is

a conjugate match for Y’l, (22). We must therefore choose the

unknowns in ( 13)–(21 ) so that the higher order terms in the

expansion of y’; are zero: this is possible up to the third

degree in a. Before going on to consider the equations in

the unknowns that this gives, note that similar equations can

be obtained for the upper filter in the passband of the lower

filter, at the set of frequencies {cri – u}, to force similar

conditions on Yj.

Expanding y’; and Y; and equating the coefficients of the

first-, second-, and third-degree terms in u-1 to zero we get

1 + r2/c#
Zl(j(coi + a)) =

(

b b13

)

Ji(l + k2/a2)
j(mi+~)D1+jD1 a+: +7 +

j(coi + IZ)D2 + jD2(a + ..”)

1 + r2/a2
.

“(

J;

)

(24a)

2jaD1 +j~i D1 +; D1bll –5 + &(a-2)
2

——: +5 +; +&(u-4). (24b)
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1

‘a” + 2D1 –
xl —C1all=O (27a)

bzl+D1bll–xl–&=O (27b)

from the a– 2 terms:
1

k,(l+jrnic’,)- [r,-(xl-+)’-$q=o (28,)

[ ( &~2-fi]=0. (28b)k2(l +jaiD1)– r2 – xl +

From the coi dependent terms in (28a) and (28b) we get the

following independent equations:

k,c,++=o kzD1 +& =0
1 1

k1=k2= –&.
11

(29)

The a-3 terms are more complicated:

–jC2a23(l +jOJ, C~)2

-K’w-xw+
-4 -3 -2 -1 0 1 2 3 4

wRADIANS/SEC“( [ ‘.
1

‘1 – ‘1 – 2D1

( [,

1 bll
–j x3+~ ~

jD2b23(l +jaiD1)2

2
. @i

‘J 4D1-)

J: co;

4D1D2– 4 ‘r2- 11
Common-port return loss of unmodified filters connected in

series.

Substituting for xl in (27a) and (27b), both azl and b2~
can be zero with no loss of generality, and we obtain–jC1a13

I
= O (30a)

1

’11 = 2C;
(34)

‘J; Hxl++)+j(x++l‘
“ (r’-[xl++I’-j%)
([ 1 all K: o;

‘~ ‘3–2C, 2 –4c1c2–4–rl - 1)}

bll =&. (35)
1

Eliminating xl, kl, and k2 in (28a) and (28b), we get

( -)111

‘1 = 4CI Cl – D1
(36)

–jD1bl, = O. (30b)

( -)111

‘2=4DI D1– C1-
(37)The co? term from (30a) gives

: K: K:
jC~C2a23 –jw = O, a23 =

8C~C2D1
(31)

1
Finally, substituting into (30a) and (30b) and solving for the

constant term, we find that X3 can be zero without loss of

generality, andand the a? term from (30b) gives

1

( -i

J; 1

’13 = 8D:C1 D2 – Cl
(38)J; J;

–jD~D2b23 +j—
8C1

= o, b23 =
8D~D2C1 “

(32)

1 (- -)K; 1
b13 = —

8C; D1 C2 – D1 “
(39)Substituting into (30a) and (30b) and solving for the ~i terms

gives, from (30a),

Equations (29) and (31~(39) are the coefficients in (2)-(10).

Consider the upper filter in Fig. 3. The design procedure
11

(- )

11

2CI – 2DI ‘xl =0’
~ (33)

‘1=2 D,– Cl
forces

Y’~(j(col + a))= Y~(j(coi + cx)) + 8(u-4)and this result is also given by (30b).
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Fig. 5. Response of the prototype diplexer example.
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Fig. 7. Response of thewaveguide diplexer. (a) Return loss. (b) Insertion loss.
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and, except for an error of the order of u-4, there must

therefore be maximum power transfer into N’l. Since the

lower filter, in its stopband, has an input impedance which is

purely reactive up to the order of a- 4, it follows that, to this

order of approximation, there is maximum power transfer

from the source to the whole network. Also, since N\ is

lossless, there is maximum power transfer from N\ to its

load. Thus it follows that

~ll(j(~i + ~)) = O + 8(a-4)

~22(h + u)) = 0 + 8(K4)

and similar conditions hold for the common port and the

output port of the other channel at the set of frequencies

{fsi - lx}.

Now consider the upper filter of Fig. 3 at the center of the

passband of the lower filter. The increase in the insertion loss

of the filter is due to the potential-divider action which

results from the passband input impedance of the lower filter

and the annulling reactance being connected in the series

with the source resistance. Considering the modifications to

the filters, it is easy to show that the increase in insertion loss

is given by

AL .%6+

and similarly

AL~%6+

This process can be .

‘0104’+&4(40)

10104’++4’41)
continued, and corrections of the

fourth and higher degrees in l/u obtained. However, the

magnitude of the corrections becomes small compared with

manufacturing tolerances, and the principle corrections are

to the resonant frequencies of the elements and are

inevitably made during tuning of the diplexer.

In [1], Rhodes showed that the symmetrical diplexer

performed well even when the channels were contiguous.

This is not true of the asymmetric diplexer, unless the

selectivities of the individual filters are comparable at their

band edges, and this criterion must be used to determine the

filter specification for a given application.

IV. PERFORMANCE OF A TYPICAL DIPLEXER

Consider the following diplexer example.

Center Frequency

(rad/s)

Low-Frequency
Channel –2.5

High-Frequency
Channel + 2.5

Each filter has a conventional Chebyshev response and

the explicit element values given in [2]. The degree and ripple

level have been chosen such that the insertion losses of each

channel are equal at zero frequency.

The common-port return-loss response of the two filters

connected directly in series is shown in Fig. 4; clearly, the

interactions between the filters cause an unacceptable degra-

dation of performance.

In contrast, Fig. 5 shows the performance obtained by

modifying the filters according to the design procedure given

in Section II: the improvement over Fig. 4 is very marked.

The in-channel return loss is better than 22 dB, and the lower

frequency channel shows very little degradation. The

insertion-loss curves also show the predicted improvement.

A waveguide diplexer has been designed from this prot-

otype. This was made in waveguide 14, at a center frequency

of 5.8 GHz and channel bandwidths of 20 and 40 MHz; the

channel separation is hence 50 MHz. The design of the

diplexer was straightforward, and is sketched in Fig. 6.

The filters were designed using direct-coupled half-wave

cavities, coupled via shunt inductive post irises. The indivi-

dual filters were designed using the procedure in [3], and

the common port was realized by a T-junction with tuning

screws at the center of the junction to provide a capacitive

annulling susceptance. The frequency-invariant suscep-

tances in parallel with the capacitors in the prototype

produce relative differences in the cavity resonant frequen-

cies and were absorbed by adjustments to the tuning screws.

The response of the waveguide diplexer agreed closely

with theory, as is shown in Fig. 7.

V. CONCLUSIONS

The direct design formulas given for asymmetric

bandpass channel diplexers can be used to design high-

performance diplexer prototypes. These prototypes can be

directly transformed into narrow-band diplexers using

direct-coupled resonator filters.

A 5.8-GHz waveguide diplexer has been designed and

built using the new formulas, and its response agreed closely

with theory.
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Bandwidth Return Loss Degree
,_

(rad/s) ripple (dB)

2.0 26 3

4.0 27.31 7


